Dive surveys of fish and invertebrates were carried out at Baeria Rocks Ecological Reserve on 7 June 2018, to continue a monitoring effort that began in 2007. Twelve divers (7 students from the Scientific Diving class of the Bamfield Marine Sciences Centre (BMSC), two Sci Diving Instructors, two course teaching assistants, and one additional diver) were present. All divers were well trained in survey techniques and identification. On each dive, one diver was assigned to tending duties, leaving 11 divers in the water. Surveys were conducted between 10.00 and 13.30 by five dive teams. Two teams conducted timed roving surveys and three teams conducted transects. As in previous years, the teams were deployed around the north islets for the first dive, and around the south islet for the second dive, alternating roving and transect teams along the shore (Figure 1).

Roving survey method

Each roving team carried out a 40-50 min roving survey, from a maximum depth of 50 ft (14.5 m) depth (where possible), to the top of the reef, swimming in a semi-systematic zigzag pattern from deep to shallow water. Both divers counted every individual observed of each species listed on an underwater roving survey sheet. When a species was very abundant (i.e. more than ~100 individuals), surveyors recorded numbers as ‘lots’. Divers noted the duration of each roving survey, as well as the depth range surveyed.

The maximum number of each species recorded between the two divers in each buddy pair was retained, and maximum numbers were averaged across roving teams for each islet. This method generates an index of abundance for each species expressed in number of individuals per 30 min.

The roving survey datasheet used in 2018 is attached.

Transect survey method

The transect method used in 2018 is identical to that used since 2009. Each transect team ran three transects, one at each of three depths (10 ft, 25 ft and 40 ft; 3 m, 8 m, 13 m). Each transect was 20 m long and 4 m wide when the visibility allowed it (2 m when visibility was poor). Once a team had laid a transect line, the divers waited for three
minutes away from the line to allow fish to re-enter the transect area. The divers then swam slowly along either side of the transect in one direction, recording the number of individuals of all fish species listed on a printed transect survey sheet. In the return direction, they recorded all individuals of all invertebrates species on the survey sheet. Each member of a buddy pair surveyed one side of the transect.

For each species, the numbers were summed within a buddy pair for each transect, and then averaged across teams for each depth at each site. This method generates estimates of absolute density.

Figure 1. Location of subtidal survey teams around the north and south islets of Baeria Rocks. Teams 2 and 4 carried out roving surveys, and teams 1, 3 and 5 carried out transect surveys.

Results and Discussion

Descriptive summary

Two roving surveys (total time: 97 min) were carried out around the North islets, and two surveys around the South islets (total time: 100 min), at depths ranging from 50 ft (14.5 m) to 10 ft (3.6 m).

A total of seven transects (total area: 400 m²) were surveyed around the North islets. Nine transects (total area: 560 m²) were surveyed around the South islets. Two transects at 10 ft (3 m) could not be done because of air limitation.
Visibility, at about 1 m, was poorer than in previous years.

Comparisons with previous years

Sixteen species of fish (of 34 listed on the spreadsheet) and 30 species of invertebrates (of 85 listed) were recorded during roving surveys, which is similar to previous years (2016: 17 fish and 29 invertebrates; 2014: 19 fish and 31 invertebrates). Five species of invertebrates (of 9 listed) and seven species of fish (of 33 listed) were recorded on the linear transects. Spreadsheets of raw and summary data can be found in the Excel file ‘Baeria Survey 2018’.

Invertebrates

In both Howe Sound (Schultz et al. 2016) and at Baeria Rocks, we documented a large increase in abundance of green urchins in 2015/2016 following the heavy mortality of sunflower stars in 2013/2014. The 2018 survey of Baeria allows us, for the first time, to follow the dynamics of these populations beyond the immediate aftermath of the mass mortality. We discover that green urchins declined by 95% between 2016 and 2018, returning to densities similar to those observed prior to the seastar mortality (Fig. 2).

The 2018 survey also reveals a similar pattern for purple urchins (Fig. 2), bat stars (Fig. 3) and ochre stars (Fig. 3). The latter appear to have been unaffected by the seastar wasting disease, unlike intertidal populations along most of the Pacific coast of the US and Canada (Schiebelhut et al. 2018). Another notable trend is the seven-fold increase in the abundance of abalone since 2007, which is found in the roving data (Fig. 2). However, the transect data suggests a continued decline of abalone density, which roughly halved between 2014 and 2016, and declined by a further 25% between 2014 and 2016.

There is no evidence that the seastars most affected by the seastar mass mortality of 2014, i.e. the sunflower star *Pycnopodia helianthoides* (Fig. 2), have begun to recover. Divers found only one small sunflower star (6-7 cm diameter) across all transect and roving surveys.
Figure 2. Abundance of invertebrate species from 2007 to 2018, derived from roving surveys, at Baeria Rocks Ecological Reserve. The invertebrates are: sunflower star (black line; effect of year in General Additive Model, $F = 3.86$, $P = 0.012$), purple urchin (purple line; $F = 6.17$, $P = 0.02$); green urchin (green line; $F = 8.17$, $P = 0.008$); northern abalone (blue line; $F = 5.31$, $P = 0.03$). Means are shown with standard errors. The pink area denotes the time window during which seastar mortality and marked sea warming occurred.

Figure 3. Abundance of invertebrate species from 2007 to 2018, derived from roving surveys, at Baeria Rocks Ecological Reserve. The invertebrates are: sunflower star (black line; repeated from Fig. 2 for reference), ochre star (yellow line; effect of year in General Additive Model, $F = 3.83$, $P = 0.06$); bat star (purple line; $F = 7.88$, $P = 0.0004$). Means are shown with standard errors. The pink area denotes the time window during which seastar mortality and marked sea warming occurred.
Two invasive species – European green crab and gold star tunicate – are still absent from Baeria Rocks. We will keep monitoring these species, although it seems unlikely that they will become established at Baeria because of its isolation and lack of suitable habitat.

Fishes

Seven species of rockfish were recorded across transects and roving surveys, which is the largest number since the start of monitoring. Two new rockfish species were recorded: Puget Sound rockfish and tiger rockfish (the latter including two very gravid individuals; Fig. 4). However, overall rockfish density of rockfish was low on transects, standing at only 6% of the maximum density observed (in 2011). The densities of kelp greenling and lingcod show significant or near-significant, gradual declines since 2009 – in both roving surveys (Fig. 5) and in transect surveys. These patterns of decline clearly predate the period of anomalously warm seawater. Divers reported no evidence of lost or derelict fishing gear on the bottom, but divers did see the remains of a fish carcass on the bottom.

Figure 4. Apparently gravid tiger rockfish, observed on 7 June 2018 at the Baeria Ecological Reserve. Photo credit: Rachel Munger
Figure 5. Abundance of select fish species from 2007 to 2018, derived from roving surveys, at Baeria Rocks Ecological Reserve. The fish species are: kelp greenling (yellow line; effect of year in General Additive Model, \(F = 10.04, P = 0.004 \)), black rockfish (black line; \(F = 1.68, P = 0.21 \)); lingcod (brown line; \(F = 3.49, P = 0.07 \)). Means are shown with standard errors. The pink area denotes the time window during which seastar mortality and marked sea warming occurred.

Bird and mammal surveys

For the first time, the monitoring team included an experienced bird surveyor, Dr John Reynolds (SFU). A total of 14 species of birds (Table 1) and one mammal species (harbor seal, \(N = 7 \) individuals) was recorded. No one went ashore.

The bird sightings were uploaded onto the citizen science site e-bird, and can be found at: https://ebird.org/hotspot/L4882533
Table 1. Birds present on and around Baeria Rocks Ecological Reserve on 7 June 2018

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>Bald eagle</td>
<td>1</td>
</tr>
<tr>
<td>Larus glaucescens</td>
<td>Glaucous-winged gull</td>
<td>220</td>
</tr>
<tr>
<td>Larus californicus</td>
<td>California gull</td>
<td>20</td>
</tr>
<tr>
<td>Chroicocephalus philadelphia</td>
<td>Bonaparte’s gull</td>
<td>3</td>
</tr>
<tr>
<td>Haematopus bachmani</td>
<td>Black oystercatcher</td>
<td>13</td>
</tr>
<tr>
<td>Phalacrocorax penicillatus</td>
<td>Brandt’s cormorant</td>
<td>22</td>
</tr>
<tr>
<td>Phalacrocorax pelagicus</td>
<td>Pelagic cormorant</td>
<td>3</td>
</tr>
<tr>
<td>Histrionicus histrionicus</td>
<td>Harlequin duck</td>
<td>2</td>
</tr>
<tr>
<td>Brachyramphus marmoratus</td>
<td>Marbled murrelet</td>
<td>2</td>
</tr>
<tr>
<td>Cephus columba</td>
<td>Pigeon guillemot</td>
<td>1</td>
</tr>
<tr>
<td>Ptychoramphus aleuticus</td>
<td>Cassin’s auklet</td>
<td>1</td>
</tr>
<tr>
<td>Aechmophorus occidentalis</td>
<td>Western grebe</td>
<td>2</td>
</tr>
<tr>
<td>Tringa incana</td>
<td>Wandering tattler</td>
<td>1</td>
</tr>
<tr>
<td>Corvus caurinus</td>
<td>Northwestern crow</td>
<td>12</td>
</tr>
</tbody>
</table>

Baeria species list

The ongoing compilation of the Baeria Rocks subtidal species is attached. The list currently stands at 122 species, 49 of which were added in 2018.

One notable species observed in 2018 by diver Rachel Munger is shown on Fig. 6. According to Dr Leslie Harris, manager of the polychaete collection at the LA County Museum of Natural History, this might be an undescribed species in the genus *Bispira*, temporarily named *Bispira* sp. 8.
A Baeria Rocks Ecological Reserves project was initiated on iNaturalist to provide a pictorial record of species found in the reserve. There are currently 71 species recorded, and this number is sure to grow with every monitoring survey.

The Baeria project can be accessed at: https://www.inaturalist.org/projects/baeria-rocks-ecological-reserve

Recommendations for future years

The Baeria Rocks surveys now span the years 2007 to 2018, and represent a valuable time-series of information on an area that experiences relatively limited human impact. Surveying the sites every other year, coinciding with the offering of Scientific Diving at BMSC, is a convenient way to continue high-quality surveys with a team of well-trained divers.

We did not provide survey datasheets with a fixed list of species to a few of the most experienced roving divers. Instead, these divers listed all species that they could positively identify, along with estimated numbers seen. We will continue to do this in the future so that we can develop a more exhaustive list of marine species present at Baeria Rocks.

One possible addition for the future could be to take photographs of the bottom to
generate a permanent record of the substrate composition. The decline in herbivorous urchins detected at Baeria over the past 2 years might be linked to food limitation, but we cannot definitely ascribe cause to effect without baseline information about benthic community composition.

We should like to invite one or more seaweed experts on future monitoring expedition because this is a species-rich taxon that BMSC divers are not well trained at identifying. Finally, we will seek permission to sample a few individuals of *Bispira* sp. 8, to aid in its identification (and possibly naming).

Acknowledgements

Thank you to BMSC for providing the staff and logistical support, and to the BC Parks Living Lab for Climate Change & Conservation Program for funding, which made the 2018 Baeria Rocks survey possible.

References

Total list of birds of Baeria Rocks Ecological Reserve (to June 2018)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corvus caurinus</td>
<td>Northwestern crow</td>
</tr>
<tr>
<td>Uria aalge</td>
<td>Common murre</td>
</tr>
<tr>
<td>Haliaeetus leucocephalus</td>
<td>Bald eagle</td>
</tr>
<tr>
<td>Larus glaucescens</td>
<td>Glaucous-winged gull</td>
</tr>
<tr>
<td>Larus californicus</td>
<td>California gull</td>
</tr>
<tr>
<td>Chroicocephalus philadelphia</td>
<td>Bonaparte’s gull</td>
</tr>
<tr>
<td>Haematopus bachmani</td>
<td>Black oystercatcher</td>
</tr>
<tr>
<td>Phalacrocorax auritus</td>
<td>Double-crested cormorant</td>
</tr>
<tr>
<td>Phalacrocorax penicillatus</td>
<td>Brandt’s cormorant</td>
</tr>
<tr>
<td>Phalacrocorax pelagicus</td>
<td>Pelagic cormorant</td>
</tr>
<tr>
<td>Histrionicus histrionicus</td>
<td>Harlequin duck</td>
</tr>
<tr>
<td>Brachyramphus marmoratus</td>
<td>Marbled murrelet</td>
</tr>
<tr>
<td>Cepphus columba</td>
<td>Pigeon guillemot</td>
</tr>
<tr>
<td>Ptychoramphus aleuticus</td>
<td>Cassin’s auklet</td>
</tr>
<tr>
<td>Aechmophorus occidentalis</td>
<td>Western grebe</td>
</tr>
<tr>
<td>Tringa incana</td>
<td>Wandering tattler</td>
</tr>
</tbody>
</table>
List of marine species from Baeria Rocks Ecological Reserve (updated 2018)
(species in bold were added in 2018; rough guide to abundance score: Abundant = >
100 per dive; Common = 10 – 100 per dive; Occasional = 5-10 per dive; Uncommon =
2-5 per dive; Rare = 0-1 per dive)

Sponges

Cliona californiana Yellow boring sponge Common
Tethya californiana Orange rough ball sponge Uncommon

Cnidarians

Anemones

Anthopleura artemisia Burrowing anemone Abundant
Anthopleura elegantissima Aggregating anemone Abundant
Anthopleura xanthogrammica Giant green anemone Abundant
Epiactis prolifera Brooding anemone Uncommon
Metridium farcimen Giant plumose anemone Common
Metridium senile Short plumose anemone Common
Pachycerianthus fimbriatus Tube-dwelling anemone Common
Urticina coriacea Stubby rose anemone Abundant
Urticina lofotensis White-spotted anemone Common
Urticina piscivora Fish-eating anemone Abundant

Zoanthids

Epizoanthus scotinus Orange zoanthid Common

Corals

Balanophyllia elegans Orange cup coral Abundant
Ptilosarcus gurneyi Orange sea pen Uncommon

Hydrocorals

Stylaster sp. Pink hydrocoral Common

Hydroids

Clava sp. White hydroid Common
Plumularia setacea Glassy plume hydroid Abundant
Schizoporella unicornis Orange encrusting bryozoan Abundant
Selaginopsis sp. Fish-bone hydroid Abundant
Sertularella sp. Garland hydroid Abundant

Stalked jellies

Manania gwilliami Red stalked jelly Uncommon

Ectoprocts (bryozoans)
<table>
<thead>
<tr>
<th>Organism</th>
<th>Description</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisia sp.</td>
<td>White tuft bryozoan</td>
<td>Abundant</td>
</tr>
<tr>
<td>Heteropora pacifica</td>
<td>Northern staghorn bryozoan</td>
<td>Abundant</td>
</tr>
<tr>
<td>Phidolopora pacifica</td>
<td>Lattice-work bryozoan</td>
<td>Uncommon</td>
</tr>
</tbody>
</table>

Molluscs

Bivalves

- **Crassadoma gigantea** Giant rock scallop Abundant
- **Mytilus californianus** California mussel Common

Limpets

- **Acmaea mitra** Whitecap limpet Abundant
- **Diodora aspera** Rough keyhole limpet Common

Chitons

- **Placiphorella velata** Veiled-chiton Rare
- **Tonicella insignis** White-lined chiton Occasional

Gastropods

- **Amphissa columbiana** Wrinkled amphissa Abundant
- **Astraea gibberosa**
- **Calliostoma annulatum** Purple-ring topsnail Uncommon
- **Calliostoma ligatum** Blue topsnail Abundant
- **Cerastoma foliatum** Leafy hornmouth Abundant
- **Fusitriton oregonensis**
- **Haliotis kamtschatkana** Northern abalone Common
- **Tegula pulligo** Dusky turban Abundant

Nudibranchs

- **Acanthodoris lutea** Orange-peel nudibranch Uncommon
- **Cadлина luteomarginata** Yellow-margin nudibranch Common
- **Ceratosa amoenum** Clown nudibranch Uncommon
- **Diaulula sandiegensis** Leopard dorid Uncommon
- **Dendronotus iris** Giant nudibranch Uncommon
- **Dirona albolineata**
- **Doris montereyensis**
- **Flabellina triophina**
- **Hermissenda crassicornis**
- **Tritonia festiva** Diamond-back nudibranch Rare

Annelids

Polychaetes

- **Bispira sp. 8**
- **Demonax medius** Parasol feather-duster Uncommon
- **Dodecaceria concharum** Coralline-encased filament-worm Abundant
- **Dodecaceria newkies** Fringed filament-worm Abundant
<table>
<thead>
<tr>
<th>Myxicola infundibulum</th>
<th>Slime-tube feather-duster</th>
<th>Abundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serpula columbiana</td>
<td>Red-trumpet calcareous tubeworm</td>
<td>Common</td>
</tr>
</tbody>
</table>

Arthropods

Shrimp

Pandalus danae | Coonstripe shrimp | Occasional |

Crabs

Cancer antennarius
Cancer oregonensis
Cancer productus
Cryptolithodes sitchensi
Lopholithodes mandtii
Loxorhynchus crispatus
Mimus foliatus
Oregonia gracilis
Petrolisthes sp
Pugettia productus
Scyra acutifrons

Cancer antennarius
Cancer oregonensis
Cancer productus
Lopholithodes mandtii
Loxorhynchus crispatus
Mimus foliatus
Oregonia gracilis
Petrolisthes sp
Pugettia productus
Scyra acutifrons

Hermit crabs

Pagurus armatus
Pagurus hemphili

Pagurus armatus | Black-eyed hermit crab | Common |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagurus hemphili</td>
<td>Maroon hermit crab</td>
<td>Common</td>
</tr>
</tbody>
</table>

Barnacles

Balanus nubilus | Giant barnacle | Common |

Echinoderms

Sea stars

Asterina miniata
CROSSASTER PAPPUS
Dermasterias imbricata
Evasterias troschelli
HENRICIA LEVIUSCULA
Hippasteria spinosa
Mediaster aequalis
Orthasterias koehleri
Pisaster brevispinus
Pisaster ochraceous
Pycnopodia helianthoides
PTERASTER TESSELLATUS
Solaster dawsoni
Solaster endeca
Solaster stimpsoni
Stylasterias forreri

Asterina miniata
CROSSASTER PAPPUS
Dermasterias imbricata
Evasterias troschelli
HENRICIA LEVIUSCULA
Hippasteria spinosa
Mediaster aequalis
Orthasterias koehleri
Pisaster brevispinus
Pisaster ochraceous
Pycnopodia helianthoides
PTERASTER TESSELLATUS
Solaster dawsoni
Solaster endeca
Solaster stimpsoni
Stylasterias forreri

Bat star
Rose star
Leather star
Mottled star
Blood star
Spiny red star
Vermillion star
Painted star
Spiny pink star
Ochre star
Sunflower star
Cushion star
Morning sun star
Northern sunstar
Striped sun star
Velcro star

Bat star
Rose star
Leather star
Mottled star
Blood star
Spiny red star
Vermillion star
Painted star
Spiny pink star
Ochre star
Sunflower star
Cushion star
Morning sun star
Northern sunstar
Striped sun star
Velcro star

Abundant
Rare
Abundant
Common
Rare
Rare
Common
Abundant
Rare
Rare
Abundant
Rare
Abundant
Rare
Uncommon
Rare
Uncommon
Common

<table>
<thead>
<tr>
<th>Urchins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesocentrotus franciscanus</td>
</tr>
<tr>
<td>Strongylocentrotus droebachiensis</td>
</tr>
<tr>
<td>Strongylocentrotus purpuratus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sea cucumbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumaria miniata</td>
</tr>
<tr>
<td>Cucumaria pallida</td>
</tr>
<tr>
<td>Parastichopus californicus</td>
</tr>
<tr>
<td>Psolus chitonoides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chordates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascidians</td>
</tr>
<tr>
<td>Boltenia villosa</td>
</tr>
<tr>
<td>Cnemidocarpa finmarkiensis</td>
</tr>
<tr>
<td>Eudistoma purpuropunctatum</td>
</tr>
<tr>
<td>Halocynthia aurantium</td>
</tr>
<tr>
<td>Halocynthia igaboja</td>
</tr>
<tr>
<td>Metandrocarpa taylori</td>
</tr>
<tr>
<td>Trididemnum alexi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embiotoca lateralis</td>
</tr>
<tr>
<td>Artedius harringtoni</td>
</tr>
<tr>
<td>Enophrys bison</td>
</tr>
<tr>
<td>Hemilepidotus hemilepidotus</td>
</tr>
<tr>
<td>Jordania zonope</td>
</tr>
<tr>
<td>Nautichthys oculofasciatus</td>
</tr>
<tr>
<td>Scorpaenichthys marmoratus</td>
</tr>
<tr>
<td>Hexagrammos decagrammus</td>
</tr>
<tr>
<td>Hexagrammos stelleri</td>
</tr>
<tr>
<td>Ophiodon elongates</td>
</tr>
<tr>
<td>Oxylebius pictus</td>
</tr>
<tr>
<td>Sebastes caurinus</td>
</tr>
<tr>
<td>Sebastes emphaeus</td>
</tr>
<tr>
<td>Sebastes flavidus</td>
</tr>
<tr>
<td>Sebastes maliger</td>
</tr>
<tr>
<td>Sebastes melanops</td>
</tr>
<tr>
<td>Sebastes nebulosus</td>
</tr>
<tr>
<td>Sebastes nigrocinctus</td>
</tr>
<tr>
<td>Rhinogobiops nicholsii</td>
</tr>
<tr>
<td>Aulorhynchus flavidus</td>
</tr>
<tr>
<td>Anarrhichthys ocellatus</td>
</tr>
<tr>
<td>Mammals</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>